F	leg.	No.	:
1	leg.	110.	٠

Question Paper Code : X 67598

B.E./B.Tech. DEGREE EXAMINATIONS, NOVEMBER/DECEMBER 2020 Fifth Semester Electronics and Communication Engineering EI 1306 – MEASUREMENTS AND INSTRUMENTATION (Regulations 2008)

Time : Three Hours

Maximum : 100 Marks

Answer ALL questions

PART – A

(10×2=20 Marks)

- 1. Define Q-Factor of a coil.
- 2. What is mean by working standards ?
- 3. List the applications of cathode ray oscilloscopes.
- 4. Draw the diagram of Q meter.
- 5. What is a function generator ?
- 6. What is a wave analyzer ?
- 7. Define absolute and relative errors.
- 8. Compare the analog and digital techniques of a measuring instrument.
- 9. Arm AB of Maxwell's bridge comprises a 720 Ω resistor, CD has a 300 Ω resistor. In arm AD, a 1.2 k Ω resistor is in parallel with a 0.525 μ f capacitor. Determine unknown inductance and resistance.
- 10. Derive an expression for the unknown frequency which could be determined using a Wien's bridge.

		PART – B (5×16=80 Mar	rks)
11.	a)	Describe the static and dynamic characteristics of a measurement system in detail.	(16)
		(OR)	
	b)	Illustrate and explain the (i) Maxwell's Inductance Bridge and (ii) Wien's bridge in detail.	(16)
12.	a)	With suitable derivations, explain the theory of working of a Q meter. Explain a method to determine unknown capacitance using the same.	(16)
		(OR)	
	b)	Explain the important features and applications of vector voltmeters.	(16)
13.	a)	With a block diagram explain the construction and working of a typical function generator.	(16)
		(OR)	
	b)	With a schematic explain the working of a Harmonic disortion analyzer.	(16)
14.	a)	i) Explain various Techniques of Extending the frequency range of Frequency meter for High Frequency Measurements.	(8)
		ii) Write short notes about Ramp Type Digital Voltmeter.	(8)
		(OR)	
	b)	Explain the Frequency Counter with neat sketch. With the help of Timing Diagram explain its operation.	(16)
15.	a)	Illustrate and describe an optical time domain reflector. Discuss its various applications in measurement of important parameters of fiber optic communication.	(16)
		(OR)	
	b)	i) Draw and explain the elements of a digital data acquisition system.	(9)
		ii) Draw the basic structure of IEEE 488 bus showing interfacing between interactive instruments.	(7)

X 67598